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SUMMARY

Complex rotational �ows of non-Newtonian �uids are simulated through �nite element methods. The
predictions have direct relevance to dough kneading, associated with the food industry. The context is
taken as two-dimensional and one of stirring material within a cylindrical vessel. Three stirrer shapes are
considered, placed in eccentric location with respect to the cylinder centre. The motion is driven by the
rotation of the outer vessel wall. Variation with change in rheology and change in stirrer shapes are anal-
ysed, with respect to �ow kinematics, stress �elds, rate-of-work and power consumed. Computations are
performed for Newtonian, shear-thinning and viscoelastic �uids, at various viscosity levels to gradually
approximate more realistic dough-like response. For viscoelastic �uids, Phan-Thien=Tanner constitutive
models are adopted. The numerical method employed is based on a �nite element semi-implicit time-
stepping Taylor–Galerkin=pressure-correction scheme, posed in a cylindrical polar co-ordinate system.
Simulations are conducted via distributed parallel processing, performed on a networked cluster of
workstations, employing message passing. Parallel performance timings are compared against those ob-
tained working in sequential mode. Ideal linear speed-up with the number of processors is observed for
viscoelastic �ows under this coarse-grained implementation. Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In this study we consider complex rotational �ows of viscous and viscoelastic �uids passed
a stationary stirrer and within a cylindrical vessel. The problem is idealized from dough
kneading, where the stirrer is located on the vessel lid and positioned in an eccentric location
with respect to the axial axis of the vessel. The motion is driven by the vessel wall. Simulations
are performed in two dimensions, representing a horizontal slice through the vertical-standing
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vessel and ignoring end-e�ects. A parallel Petrov–Taylor–Galerkin=pressure-correction scheme
is employed, that involves time-stepping and �nite element procedures.
The objective is to systematically analyse the in�uence of stirrer-shape and variation in

rheology, assessing how this impinges upon �ow structure, rate-of-work generated and power
consumption. The corresponding implications for dough kneading are explored. Optimization
of dough kneading is the goal through build-up of material structure, achieved by maxi-
mizing local rate-of-work done per unit of power. Three di�erent stirrer-shapes are con-
sidered: full, half-horizontal and half-vertical. Computations are performed for Newtonian,
shear-thinning (Carreau model) and viscoelastic �uids (Phan-Thien=Tanner models, PTT).
Material ranges cover model �uids, model doughs, and dough-like �uids. The viscoelas-
tic models incorporate some degree of strain-softening into the representative �uid
properties.
Our earlier work in this area has lead in the direction of fully three-dimensional vis-

cous �ows [1], transient free-surface viscous �ows [2], and viscoelastic �ows with one- and
two-stirrer mixer designs [3]. See also Reference [4], concerning the related topic of three-
dimensional swirling �ows in a cylindrical vessel driven by the motion of the vessel lid.
That work demonstrated change in vortex patterns with rise in inertia and also the in�u-
ence of elasticity. In our previous viscoelastic studies [5], we utilized two di�erent types of
Phan-Thien=Tanner models (linear, LPTT, and exponential, EPPT) for two sets of material
parameters. For model �uids (low elasticity number), this allowed us to incorporate inde-
pendently shear-thinning, strain-softening=hardening and elastic properties, and compare their
relative in�uence upon �ow behaviour, localized rate-of-work and power consumption. Also,
the e�ects of increasing rotational vessel speed were investigated. For the one-stirrer problem,
our observations were that elastic contributions dominated viscous ones in both rate-of-work
and power. The larger the strain-hardening response, the greater the power accrued. Local
maxima in stress di�erential were large (twice that of two-stirrer case) and localized in�u-
ences dominated. In contrast, for the two-stirrer problem, shear in�uences tended to dominate
locally, so that localized rate-of-work of viscous and elastic contributions were of comparable
order. Nevertheless, due to more global dispersal of stress the global power doubled for the
two-stirrer problem over the one-stirrer case.
Industrial �ows with viscoelastic materials presents many interesting and challenging prob-

lems. To compute such industrial-scale �ow problems requires huge computational recourse.
This has lead to the advent of parallel computation. Recent advance in this area with both
hardware and software technology, has given rise to the serious possibility of distributed com-
putation, utilising message passing for interprocessor-communication. In this manner, massive
problems become tractable, by appealing to parallel algorithms and increasing the number
of processors within a de�ned network-cluster. Two such public-domain (supported) systems
for message passing are message passing interface (MPI) [6] and parallel virtual machine
(PVM) [7]. For our parallel implementations, we ensure uniform load distribution between
sub-problems, using a recursive spectral bisection (RSB) domain decomposition technique,
and appeal to PVM as our preferred message passing protocol. In this fashion, both homoge-
neous and heterogeneous network-clusters of work-stations have been tested, on two di�erent
Unix operating systems [5, 3].
To place the present work into context with respect to viscoelastic �ows, solving associated

algebraic linear systems of equations constitutes a large proportion of CPU time overhead.
The discrete problem may be posed in either coupled form, leading to large system matri-
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DISTRIBUTED COMPUTATION FOR ROTATING FLOWS 1303

ces, or alternatively, in decoupled mode which may be handled iteratively. In the viscoelastic
domain, examples of using PVM for parallelizing numerical codes are described in References
[8–11]. In Reference [8], two-dimensional steady-state solutions for entry �ow and stick–slip
�ow problems were obtained employing POLYFLOW code with a �nite element algorithm.
A non-linear system of partial di�erential equations of mixed-type KBKZ integro-di�erential
equations was solved over unstructured triangular meshes. Both coupled and decoupled system
approaches were contrasted, with a dual Schur complement technique to solve the algebraic lin-
ear systems involved. In Reference [9], a time-stepping �nite volume method was used. Results
were presented for the solution of �ow past a cylinder between two parallel plates, employing
an exponential PTT model, unstructured triangular meshes, and a decoupled solution proce-
dure. The algebraic linear system of equations was solved sequentially through a SIMPLER
iteration procedure with an explicit Gauss–Seidel solver. As in the preset work, RSB domain
decomposition was recommended for mesh partitioning. Both References [8, 9] used PVM
on MIMD parallel computers within a master=slave network con�guration. Intel IPSC=860
hypercube and convex meta series shared-memory platforms were used by Reference [8],
whilst DEC-alpha clusters were used by Reference [9]. With a �xed mesh, the performance
of the above [8, 9] parallel implementations were presented demonstrating monotonically in-
creasing speed-up and decreasing e�ciency with increased numbers of processors. Results
were also shown on a �xed number of processors, illustrating increase in speed-up and e�-
ciency with increased problem size.
In References [10, 11], we described the parallel implementation of the present TGPC

algorithm for inelastic �uids and �ow past a rigid sphere in a tube employing unstruc-
tured meshes. Parallelisation was achieved via FORTRAN 77 code, using PVM on a clus-
ter of diskless Sun Sparc-1 workstations, based upon paradigms of domain decomposition
and a degree-of-freedom approach. A hybrid solution method was adopted, that involved a
direct Choleski factorization for the pressure sti�ness matrix and an iterative approach for the
momentum equations. Parallel e�ciency close to linear was achieved. In a further article
[5], we described how the algorithm was implemented in parallel via FORTRAN 90 code
for viscoelastic �uids using di�erential constitutive models of single-mode type. There, we
dealt with three-dimensional �ows, both within lid-driven cavities and between concentric
rotating cylinders. The lid-driven cavity �ow is a popular benchmark problem, industrially
relevant for processing applications such as in coatings with short-dwell coaters and general
coating processes (i.e. �exible blade, roller, and packing tape coating). The concentric rotat-
ing cylinder problem is a simpli�ed �ow, considered as a precursor to more complex stirring
problems, relevant to the food industry. Results were presented for these relatively large prob-
lems, providing benchmark characteristics for the parallel implementation. Once more, metrics
of speed-up and parallel e�ciency revealed attractive linear performance on di�erent sized
meshes and network con�gurations.
Eccentric rotating cylinder problems arise in other context, such as that of the journal

bearing problem, where aspect ratios between outer and inner cylinders may be high. Examples
of such solutions for viscoelastic �uids, lie in References [12, 13] with �nite element methods
and Reference [14] with spectral element methods. In this context, the studies of Dris and
Shaqfeh [12, 13] revealed purely elastic �ow instabilities. Velocity pro�les varied as a function
of eccentricity, azimuthal coordinate, and the ratio of cylindrical rotation rates. Global e�ects
drastically altered the hoop stresses in the base �ow and the onset of �ow instabilities was
shown to be the result of non-local e�ects.
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With respect to appropriate constitutive equations for dough, we cite two theoretical papers
that deal with �our=water dough-mixtures and oscillatory �ows [15, 16]. In Reference [15] a
constitutive equation is proposed to represent rubber-like dough material response with strain-
softening behaviour. Good agreement was reached between relaxation spectra and derived
data for their model and original data available for this material. In a second article [16], and
with the derived constitutive model, these authors con�rm agreement between experiments and
predictions in large-amplitude oscillatory shear �ow. This work provides some pointers as to
the more appropriate properties to inherit in representing the response of some dough-like
materials. In this regard, present modelling strives to be qualitative, but for more complex
�ows.
The outline of the current paper follows an introduction to the �ow problem, its speci�cation

and discretization, a detailed discussion upon the parallel algorithm and its implementation,
prior to the analysis of our solutions and timings. We close with our re�ections upon the
implications of our �ndings with respect to the background foods processing problem.

2. FLOW EQUATIONS

Incompressible non-Newtonian �uid �ow can be represented through an equation system com-
prising of equations to govern momentum transport, conservation of mass and a constitutive
law for the state of stress. In the absence of body forces and under isothermal conditions such
a system can be represented via a statement for the conservation of mass viz.,

∇ · u=0 (1)

and for momentum transport,

�
@u
@t
=∇ · � − �u · ∇u (2)

where, u is the �uid velocity vector �eld, � is the Cauchy stress tensor, � is the �uid density,
t represents time and ∇ the spatial di�erential operator. The Cauchy stress tensor can be
expressed in the form:

�=− p�+ Te (3)

where p is the isotropic �uid pressure, � is the Kronecker delta tensor, and Te is the total
stress tensor.
For constant viscosity (�) Newtonian �uids,

Te=2�d (4)

where the rate-of-strain tensor d = 1
2[∇u + (∇u)†], and † represents the transpose operator.

For a generalized non-Newtonian or inelastic �uid, Te, can be represented as

Te=2�(�̇)d (5)

where �(�̇) is the viscosity function, dependent upon the shear-rate (�̇). For the Carreau model,
the viscosity representation takes the form

�(�̇)=�∞ +
�0 − �∞
1 + (k�̇)m

(6)
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Figure 1. Carreau model viscosity: (a) �0 = 1:05; (b) �0 = 10:5;
and (c) �0 = 105 Pa s (m=0:62; k = 0:083; �∞=0:001).

where �0 and �∞ are the zero shear-rate and second Newtonian plateau viscosities
(see Figure 1), respectively, and m is a power-law index. In all viscosity plots, units refer
to Pa s with reciprocal seconds on shear-rate.
The upper-convected Phan-Thien=Tanner di�erential constitutive model, with total stress

tensor Te, may be expressed as

Te =2�2d+ � (7)

�1
∇� +f�=2�1d (8)

where � is the polymeric extra stress tensors, �1 and �2 are corresponding fractional viscosity
splits, of polymeric and solvent type, and �1 is a relaxation time. Then, a total viscosity
�=�1 + �2. The non-linear function f of Equation (8) is de�ned as

Exponential version: f=e(��1=�1)Tr(�)

where Tr(�) is the trace of the polymeric stress tensor and � is a material parameter. In our
present work with the exponential Phan-Thien=Tanner model, we select a parameter level of
�=0:25, and adopt the notation EPTT(0.25). This model variant supports a shear-thinning
response in pure shear (�s(�̇) of Figure 2). In uniaxial extensional �ow, EPPT(0.25) displays
strain-softening, see �e(�̇) of Figure 3.

3. PROBLEM SPECIFICATION

Three di�erent problems are investigated, with a rotating vessel and a single eccentrically
positioned stirrer, with respect to the vessel axis. Each problem represents a change in shape
of stirrer. The �rst such problem is that with full-stirrer (E-F1S). Subsequently, two alternative

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 43:1301–1328
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Figure 2. EPTT(0.25) shear viscosity (Pa s), �s (�̇);�1=�c60:999, �2=�c 6 0:001 and �1 = 1.

Figure 3. EPTT(0.25) elongational viscosity (Pa s), �e(�̇); �1=�c = 0:999, �2=�c = 0:001 and �1 = 1.

stirrer variations are considered: one with a horizontal half-stirrer (E-H1S), and a second, with
a vertical half-stirrer (E-V1S).
Numerical solutions are sought for Newtonian, generalized Newtonian (inelastic) and visco-

elastic �uids. For the non-Newtonian �uids, shear-thinning is introduced via Carreau (inelastic)
and exponential Phan-Thien=Tanner (viscoelastic) models. At a unit value of We, the Phan-
Thien=Tanner model with a material parameter of �=0:25, displays slight strain-hardening
at strain-rates O(1) and subsequently strain-softens. With respect to rheological behaviour at
di�erent Weissenberg number (We) values, shear viscosity (�s) and extensional viscosity (�e)
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linearly shift in functional response, so that the same sort of trends are noted, but arise earlier
in the deformation-rate ranges.
To complete the problem speci�cation, appropriate initial and boundary conditions are re-

quired. Simulations commence from quiescent initial conditions. Boundary conditions are no-
slip on solid surfaces, so that the velocity vanishes on the stirrer, whilst at the outer rotating
vessel, vr =0 and v	=1 unit. The pressure vanishes at the vessel wall. For these closed
streamlines viscoelastic �ows, stress is unspeci�ed at both stirrer and vessel wall.
In this study, due to the nature of the �ow problems, the coordinate reference frame is taken

as a two-dimensional cylindrical polar system. Numerical results are presented through contour
plots of stream-function, pressure, shear-rate, local rate-of work done and the components of
stress. Other solution �elds of interest are shear-rate, localised rate-of-work and global power
are de�ne as

Shear-rate:

�̇=
√
2I2

Local rate-of-work done:

ẇ=Te : ∇u= ẇ� + ẇ�

Power:

Ṗw(t)= Ṗ� + Ṗ�=
∫
�
ẇ(x; t) d�

Here, I2 is the second invariant of the rate-of-deformation tensor, ẇ� and ẇ� are the vis-
cous and elastic contributions of the local rate-of-work done, respectively. Ṗ� and Ṗ� are the
independent viscous and elastic contributions to power. The total work done upon the system
over a time period [0;T], may be de�ned from the time integral of Ṗw(t).
There are three non-dimensional group numbers relevant here: Reynolds number, Re=


−1VR, where kinematic viscosity 
=�c�−1; Weissenberg number, We= �1VR−1; and Elas-
ticity number, E=WeRe−1 = �1
R−2. The elasticity number itself interrelates both Re and
We, so that a level of elasticity may be established for a single set of material parameters,
independent of reference velocity scale (or �owrate). The characteristic velocity V is taken
to be the speed of the vessel typically 50 rpm, the characteristic length scale is the diameter,
2R, of the stirrer and the characteristic viscosity �c is the zero-shear viscosity.
Appropriate scaling in each variable takes the form: p=p∗(V�c=R), �̇= �̇∗(V=R),

Ẇ = Ẇ
∗
(�cV 2=R2) and �= �∗�c(V=R). At a characteristic rotational speed 50 rpm and

zero-shear viscosity of 105Pa s, scaling yields dimensional variables p=2444p∗, �̇=23:28�̇∗,
Ẇ =56894W ∗ and �=2444�∗, with shear-rates O(102)s−1.

4. PARALLEL NUMERICAL METHOD

To compute numerical solutions in primary variables of velocity, pressure and stress, we follow
Equations (1)–(8). Here, this involves a parallelized time-marching �nite element algorithm.
This algorithm follows a so-called fractional-staged semi-implicit Taylor–Galerkin=pressure-
correction scheme, par-TGPC [3, 5, 10, 11]. In this algorithm temporal domain discretiza-
tion is achieved adopting a Taylor series expansion in time, prior to spatial discretization.
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A pressure-correction operator-split is used to construct a second-order time-stepping scheme
[17, 18]. Spatial discretization is achieved via Galerkin approximation for the momentum and
streamline-upwinding-Petrov–Galerkin (SUPG) approximation for the stress constitutive equa-
tions [19–21]. The �nite element basis functions employed in this study are quadratic for
velocities and stress (�i(x)), and linear for pressure (�i(x)). Galerkin integrals are evaluated
by a seven-point Gauss quadrature rule. The interpolation takes the form U(x; tn)=Un

i �i(x);
P(x; tn)=Un

i  k(x); �(x; tn)=Tn
i �i(x); from which the fully discrete system emerges in vector–

matrix form:

Stage 1a:

[
2ReM
�t

+
S
2

]
(Un+(1=2) −Un) = {L†P − SU −D†T− ReN(U)U}n

2We
�t

M(Tn+(1=2) − Tn) = [2�1DV −MT]n −We{N(V)T+ F(T)V}n

Stage 1b:
[
ReM
�t

+
S
2

]
(U∗ −Un) = {L†P − SU}n − {D†T− ReN(U)U}n+(1=2)

We
�t
M(Tn+1 − Tn) = [2�1DV −MT]n+(1=2) −We{N(V)T+ F(T)V}n+(1=2)

Stage 2:

	K(Pn+1 − Pn)=
1
�t
LV∗

Stage 3:
1
�t
M(Vn+1 −V∗) = −	L†(Pn+1 − Pn)

Utilizing implied inner product notation 〈 〉 for domain integrals, the above system involves
matrices of the form:

Mass matrix; M= 〈�i�j〉,
Pressure gradient matrix; L=(Lr; L	)=

〈(
@�i
@r  k ; 1r

@ i
@r	

 k

)〉
,

Gradient matrix; D=(Dr;D	; D)=
〈(

@�i
@r �i; 1r

@�i
@	 �i; 1r �i�j

)〉
,

Sti�ness matrix; K=
〈

@ 1
@r

@ k
@r +

1
r 2

@ 1
@	

@ k
@	

〉
,

Non-linear advection matrices;

N(U)= (N (U); N1))=
〈(

�i

(
�lVl

r
@�j

@r
+
1
rl

�lVl
	
@�j

@	
; �i�lVl

	�j

))〉

Non-linear elastic matrices; F(T)= (F1; F2; F3; F4; F5)
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where

F1 =
〈
�i

(
�lT l

rr
@�j

@r
+
1
r
�lT l

r	
@�j

@	

)〉
; F2 =

〈
�i

(
�lT l

r	
@�j

@r
+
1
r
�lT l

		
@�j

@	

)〉

F3 =
〈
�i
1
r
�lT l

rr�j

〉
; F4 =

〈
�i
1
r
�lT l

r	�j

〉
; F5 =

〈
�i
1
r
�lT l

		�j

〉

and di�usion matrices; S=(Srr ;Sr	;S		), where

Srr = �2

〈(
2
@�i

@r
@�j

@r
+
2
r2

�i�j +
1
r2

@�i

@	
@�j

@	

)〉

Sr	 = �2

〈(
1
r
@�i

@	
@�j

@r
+
2
r2

�i
@�j

@	
− 1

r2
@�i

@	
�j

)〉

S		 = �2

〈(
@�i

@r
@�j

@r
+
1
r2

�i�j − 1
r2

�i
@�j

@r
− 1

r
@�i

@r
�j +

2
r2

@�i

@	
@�j

@	

)〉

The time-step, �t, is taken as 10−2, so as to satisfy a local courant condition constraint
[18–21]. The implicit splitting of pressure terms in the pressure-correction leads to the factor
	, and a second-order scheme if taken as 1

2 . In addition, the Crank–Nicolson splitting of
di�usion terms at stage-1, incorporates the implicit di�usion contribution to the left-hand side
of the equation.

4.1. Parallelization strategy

The semi-implicit time-stepping par-TGPC algorithm is implemented with recourse to the
message passing protocol, PVM. Each of the three individual fractional-stage phases of the
algorithm is parallelized within a single time-step loop. This implies operations of gather and
scatter of data, pre- and post-each phase, respectively. We relate such operations, through
PVM send and receive communication commands, with message passing between master and
slave processors. This is an important issue to ensure protocol integrity, correct system con�g-
uration and network communication. The domain is partitioned into several sub-domains and
the combined, problem is segregated into associated sub-problems, each relating to an individ-
ual sub-domain. The system of equations, at stages one and three, are solved by an iterative
Jacobi technique. At stage two, a Poisson equation, for the temporal di�erence of pressure
is solved by a direct Choleski method. Within each time-step loop, all fractional-stages are
parallelized independently. As this algorithm is dominated by construction of right-hand side
vectors, through element loops and iterative compute phases, time consumption is theoretically
linear in degrees-of-freedom per time step. Speed-up, via parallelism, should also re�ect this
property over the processors, provided communication overhead is minimal compared with
process calculation time. Limitations due to large problem size may be signi�cantly reduced
with distribution of memory resource for each subproblem. For e�ciency, the direct Choleski
solution process necessitates optimised node numbering and bandwidth reduction. A general-
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ization of Sloan’s algorithm [22] over multiple domains is used to achieve such bandwidth
reduction through reordering of node numbers.
Only the pressure equation step is solved through a direct procedure (Choleski), involving

the explicit parallel construction and solution of a matrix problem. It is upon this basis that
the present parallel performance characteristics are achieved. A comprehensive description on
the parallelization of par-TGPC and the algebraic solution procedures is give in Reference
[11]. Brie�y, both direct and iterative procedures necessitate an assembly and solution phase,
involving �nite element loop construction of right-hand side vectors and matrix components.
For the Choleski procedure, invoked for pressure, the matrix components must be stored.
Fortunately, this is manageable even for large problems, as the pressure variable is of scalar
form over the domain.
The iterative solution phase is nodally based. Each sub-problem on a slave processor, �rst

computes for the boundary (interfacing) nodes, so that their result may be communicated to
the master processor directly, whilst the computation for interior sub-domain nodes is com-
pleted. This enables e�ective masking of communication. The combined domain contributions
for the interfacing nodes are processed by the master processor, which also controls system
synchronization and processor intercommunication. The parallel �nite element Jacobi iteration
may be expressed in concise notational form for a domain partitioned into n sub-domains, as



par�




XP1

· · ·
XP2

· · ·
XP3

· · ·
...

· · ·
XPn




r+1

nodes

= (I −!M−1
d Mfe)




XP1

· · ·
XP2

· · ·
XP3

· · ·
...

· · ·
XPn




r+1

nodes

+!M−1
d [b]nodes

The notation implies an iteration number r, acceleration factor !, right-hand side vector b,
iteration sub-domain vector XPi , system mass matrix Mfe and diagonal matrix Md. Using
boolean transformation element matrices Le and element mass matrices M

fe
e , system matrices

can be represented in the form

Mfe=
∑
elt
LT

eM
fe
e Le; Md=fdiag(Mfe)

A single iteration sweep of this type will maintain integrity levels of the data re-
synchronisation. Care, likewise, must be taken with respect to consistent solution increment
tolerance calculations across individual slave and master processors. We recall that the master
processor must gather the iterative contributions to interfacing nodes, that normally straddle
more than one sub-domain.
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Figure 4. Finite element meshes: Mesh-M2 series.

The parallel direct solution phase adopts a Schur-complement approach. This introduces a
parallel herring-bone structure for the Choleski system matrix which may be represented as



par�




[P1] [MP1]

[P2] [MP2]

[P3] [MP3]

· ·
· ·

· ·
[Pn] [MPn]

[P1M ] [P2M ] [P3M ] [PnM ] [M ]




with [Pi] the matrix for the sub-domain problem for the interior of sub-domain i; [PiM],
the matrix contribution of interior sub-domain i to the boundary-node problem, and [M] that
for the boundary-nodes. Each interior sub-domain problem may be solved in parallel with
all others. Finally, the interfacing-node matrix problem is solved, for which all available
processors may be pooled. To date, the size of the interfacing-node matrix problem has been
such that it was only necessary to use a single processor (the master) for this task. In such a
manner, large-scale problems, typically of three-dimensional or viscoelastic form [11] become
tractable.

4.2. Meshing and domain decomposition

Finite element meshes for these problems are displayed in Figure 4. For each domain, we have
generated three di�erent meshes to check for mesh convergence. This has been managed so
that maximum di�erences are within one percent between solutions on any two consecutively
re�ned meshes. Table I records the detailed statistics for the meshes employed.
The domain of interest is decomposed into a number of subdomains, according to available

resources. In this study, uniform load distribution is ensured using a recursive spectral bisection
method [23]. As the recursive spectral bisection method basically supports partitioning in
powers of two, a partitioning method is employed for six and twelve subdomains using
information from eight and sixteen subdomains splits, as gathered from RSB. The various
sub-domains generated in this manner are illustrated in Figure 5 for 2, 4, 6, 8, 12 and
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Table I. Finite element mesh data.

Meshes Elements Nodes DOF(N) DOF(V)

E-F1S
M1 1536 3168 7152 16656
M2 2560 5248 11840 27584
M3 3840 7840 17680 41200

E-H1S
M1 1704 3488 7868 18232
M2 2784 5672 12788 29804
M3 4200 8530 19225 44815

E-V1S
M1 1704 3488 7868 18232
M2 2784 5672 12788 29804
M3 4200 8530 19225 44815

Figure 5. Typical domain partitions.

16 subdomains. For six and twelve subdomains, a uniform load distribution is not strictly
extracted. With an increasing number of subdomains, interfacing nodes (Inn) increase (as
does communication cost), whilst the number of elements, nodes (Nn) and degrees-of-freedom
per subdomain decreases. Table II, presents the number of elements, nodes and DOF per
subdomain, the number of interfacing nodes (master/slave) and ratio of subdomain nodes to
interfacing nodes (Gn =Nn : Inn).
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Table II. Domain decomposition data for E-V1S; mesh-M3 series.

Interface nodes Cn
Elements/ Nodes/

Domains subdomain subdomain Slave Master DOF(N) DOF(V) Slave (%) Master (%)

1 4200 8530 0 0 19225 44815 — —
2 2100 4314 98 98 9760 22702 2.3 2.3
4 1050 2186 113 216 4938 11496 5.2 9.9
6 700 1475 112 318 3375 7800 7.6 21.5
8 525 1115 109 393 2513 5858 9.8 35.2
12 350 758 108 545 1728 4002 14.2 71.9
16 262 567 111 620 1275 2976 19.6 109

5. SOLUTION CONTINUATION PROCEDURE

In order to compute viscoelastic solutions to the extreme levels of material parameters involved
here, a detailed and selective path of numerical continuation must be adopted. It is a technically
challenging problem to accomplish this task, as numerical stability is extremely restrictive in
this respect. It is noteworthy, that all current numerical algorithms in vogue today meet such
barriers and the accomplishments therein are somewhat limited. The two signi�cant parameter
spaces we explore, that fall within this category, are high Weissenberg number (large �1)
and predominant solute viscosity factor (�∗

1 = (�1=�c). The fact that the EPTT model can
support relatively high We (up to O(102) and large �1 (approaching unity) solutions has
been demonstrated elsewhere, under industrial level requirements [24–26]. Reaching such
high elasticity levels is an open and current research topic (see review articles, [27–30]).
The issue surrounding the viscosity split level is somewhat related to the foregoing, in that
it governs the amount of solvent stress apportioned to the system (hence, governs departure
from Maxwellian speci�cation), and this provides a level of stability to the problem.
Our target is to compute solutions to We=13 (�1 = 0:56 s and (�2=�1)= 1

999 ) for the
EPTT(0.25) model at any particular Re level (say, Re=0:08 with �c = 105 Pa s). To achieve
this, we adopt a number of di�erent continuation paths. First, we establish a coupled visco-
elastic solution, commencing from an initial state of rest, for a relatively low level of
Weissenberg number (We64:6) and viscosity split of 1

2 . From this solution, we are able
to compute coupled solutions and decrease the viscosity split to 3

7 . To elevate the level of
elasticity to We=13, it is necessary to subsequently decouple the solution procedure and
freeze the velocity �eld, hence computing a stress �eld [31]. Such a stress solution may then
be recycled to reestablish a consistent kinematic �eld. The �nal stage of the process is to
compute a stress solution at a level of 1

999 . This most severe level is accomplished again
through a decoupled step, as above.
The precise choice of values is not so signi�cant here, but the phased continuation is crucial.

Clearly, the above procedure is a tortuous path, but one that is pragmatic and absolutely
essential to make headway in this challenging domain. We are careful to point out that, we
invoke a coupled viscoelastic solution (including kinematics), in an attempt to remain close
to the desired ultimate solution. That is, in place of a totally decoupled approach frequently
cited in the literature [32], in which inelastic kinematics may be invoked instead.
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6. NUMERICAL RESULTS

The numerical results are investigated from two distinct points of view: through geome-
try adjustment (E-F1S, E-H1S and E-V1S) and change of �uid (Newtonian, inelastic and
viscoelastic). This leads to analysis with respect to increasing viscosity levels (decrease of
Reynolds number), in�uence of di�erent rheological behaviour (viscous to shear-thinning, with
and without memory, increasing relaxation time) and comparison of �ow structure variation
across problem instances (re�ecting localised rate-of-work and global power consumption).
The predicted solutions are displayed through contours plots of streamlines, shear-rate, rate-
of-work done, pressure and stress. Pressure and stress patterns are plotted with eleven con-
tours, from the minimum to maximum value, over a �xed range. Streamlines are plotted in
two regions: �rst from the vessel wall to the stirrer perimeter, 0:06�62:95 at increments of
0.5 units, and second, from the stirrer to the centre of the recirculation, 3:056�6�max at
increments of 0.2 units. Comparative diagnostics may be derived accordingly.
Various increasing levels of zero-shear viscosities �c (characteristic) are considered, from

which Reynolds number is computed, as de�ned above. For Reynolds numbers of Re=8:0,
0.8 and 0.08, the corresponding zero-shear viscosities are �c = 1:05, 10.5 and 105:0 Pa s.
Of these levels, a range of material properties is covered from those for model �uids, to
model dough, to actual dough, respectively.

6.1. Flow patterns with increasing inertia

The e�ect of increasing Reynolds number upon streamline patterns is represented in contour
plots for all three problems: full stirrer (E-F1S, Figure 6), horizontal half-stirrer (E-H1S,

Figure 6. Streamfunction: E-F1S.
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Figure 7. Streamfunction: E-H1S.

Figure 7) and vertical half-stirrer (E-V1S, Figure 8). Such data are provided at Re=0:08
and 8 for Newtonian, inelastic and viscoelastic EPTT(0.25) �uids. At a low level of inertia,
Re=0:08, and for all problem instances, an intense recirculating region forms in the centre
of the vessel, parallel to the stirrer and symmetrically intersecting the diameter that passes
through the centres of the vessel and stirrer. Flow structure remains una�ected as Re rises to
values of O(1); hence we suppress this data. However, upon increasing Reynolds number up
to eight, so O(10), inertia takes hold and the recirculation region shifts towards the upper-
half plane, vortex intensity wanes and the vortex eye is pushed towards the vessel wall. The
�ow becomes asymmetric as a consequence of the shift in vortex centre. Comparing inelastic
and Newtonian �ow patterns, it is apparent that shear-thinning does not alter either the �ow
structure or the shift in recirculating eddy position. This is true irrespective of the level of
Re. The introduction of elasticity does not alter the above �ndings at Re=0:08. In contrast,
at Re=8 and for viscoelastic over viscous �uids, there is a more exaggerated twist of the
asymmetric vortex pattern in the direction of the vessel motion. Elasticity is found to promote
the shift of vortex centre towards the vessel wall and reduces vortex intensity. Overall, �uid
memory and shear-thinning e�ects have only a mild in�uence on these streamline patterns.
It is the inertial in�uence that dominates.
We may contrast the �ow patterns across all three geometry variants: E-F1S, E-H1S and

E-V1S. For E-H1S, in contrast to E-F1S, the �ow manifests more dramatic compression and
expansion around both sides of the stirrer. For viscoelastic �uids, this abrupt change in �ow
structure plays an important role (see on). In the E-V1S case compared to E-F1S, the �ow
circumvents the stirrer more smoothly on the side towards the vessel centre, whilst on the
counterside of the stirrer, the �ow structure emulates that of E-F1S.
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Figure 8. Streamfunction: E-V1S.

6.2. Field data, E-F1S

For the inelastic (�uid-1b) simulations and all three geometries, we �rst plot pressure, shear-
rate and local rate-of-work. Results at Re=0:08 appear in Figure 9, whilst Figure 10 covers
data for the higher inertial level of Re=8. For E-F1S and E-V1S domains at Re=0:08,
symmetric pressure isobars appear with equal magnitude in non-dimensional positive and
negative extrema on the two sides (upper and lower) of the stirrer in the narrow-gap. The
extrema for E-V1S correspond to the sharp tips of the stirrer and double the values of those
for E-F1S. Whilst for E-H1S case, asymmetric contours are observed, with positive maximum
on the top of the stirrer (as for E-F1S, of same order), and negative minimum at the outer
stirrer tip (near the narrow-gap, of equal order to E-V1S), see Table III.
Similar symmetry arguments apply across the geometry variants in variables of shear-rate

and rate-of-work done. Extrema in shear-rate and rate-of-work are replicated for E-F1S and
E-V1S. In contrast, the E-H1S case generates increase in shear-rate of �fty percent and rate-
of-work doubles. These extrema always remain on the stirrer at the narrowest part of the gap
between stirrer and vessel wall. For E-H1S, this location corresponds to the sharp tip of the
stirrer.
As we increase inertia to Re=8, and contrast Figures 9–10, asymmetrical �ow structure is

observed in all variables and across all geometries. In non-dimensional terms above Re=0:08
(noting scale di�erences), there is increase in pressure-di�erential, shear-rates rise by as much
as twenty-�ve percent and by even more in rate-of-work. For the Newtonian (�uid-1a) results
(not shown here), as compared to the equivalent inelastic �uid-1b, shear-rates decrease, whilst
pressure di�erential and localized rate-of-work increase. For both types of �uid, the extrema
of shear-rate and rate-of-work, along with power and pressure di�erential, are tabulated for
completeness in Table III at Re=0:08.
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Figure 9. Field plots: inelastic �uid-1b, Re=0:08 (�c = 105 Pa s).

Corresponding �eld kinematic data for viscoelastic �uid-2 at Re=0:08 are presented in
Figure 11 and stress components are displayed in Figure 12. In contrast to viscous �uids-1b,
the contours of pressure, shear-rate and local rate-of-work are now asymmetric, even at this
low level of inertia. Pressure di�erentials are generally lowered, and similar balance in extrema
is noted to those for �uid-1b in E-F1S and E-H1S �ows. However, the position for E-V1S
di�ers from �uid-1b, in that positive maxima exceed negative minima by about �fty percent.
As in Table IV, trends in maxima of shear-rate follow the inelastic �uid-1b, noting that greater
shear-thinning is associated with the EPTT(0.25) �uid-2. Local rate-of-work maxima are now
an order of magnitude smaller than those for viscous �uids-1, and the non-symmetric stirrer
cases provide double the values of E-F1S. If anything, there is slightly larger rate-of-work
done in the E-H1S above E-V1S case at this inertial level (see Tables IV and V for contrast
in Re). Another feature is the wider dispersal of shear-rate and rate-of-work for �uid-2 above
�uid-1. As a consequence, we attribute this largely to �uid memory e�ects.
In Figure 12, we contrast �eld data on the three elastic stress components across the three

mixer designs. The hoop stress tends to dominate the other components (azimuthal stretching),
displaying the more prominent and extended wake region beyond the stirrer, in a zone close
to the vessel wall occupied by �ow lines that encounter the stirrer. Also, radial stress is non-
negligible (radial stretching). Accounting for di�erentials (max-min) of stress, we are able to
discern that E-V1S results closely resemble those of E-F1S. If anything, there is only minor
rebalancing between hoop and shear stress, from E-F1S to E-V1S case. The principal point is
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Figure 10. Field plots: inelastic �uid-1b, Re=8 (�c = 1:05 Pa s).

Table III. Viscous �uids-1(a, b): shear-rate, local rate-of-work maxima; power; �=10−2;
Re=0:08 (�c = 105 Pa s).

Newtonian Inelastic

Problem �̇ ẇ Ṗw �P �(ẇ : Ṗw) �̇ ẇ Ṗw �P �(ẇ : Ṗw)

E-F1S 3.78 12.60 1446 6.10 0.87 4.26 11.69 1244 5.26 0.94
E-H1S 5.05 25.19 1364 7.71 1.85 6.18 22.75 1173 6.85 1.94
E-V1S 3.53 12.24 1539 9.50 0.80 4.20 11.40 1339 8.21 0.85

the signi�cant rise from E-F1S to E-H1S �ow in both shear and hoop stress di�erentials. The
hoop stress di�erential doubles, whilst the shear stress di�erential triples. We observe that
both such quantities will contribute to shear and extensional elastic work, as �ow lines distort
away from an orthogonal circular co-ordinate frame-of-reference. This arises in the vicinity
of the stirrer, where stress extrema occur. Radial stress di�erentials are slightly larger than
those of shear stress, in E-F1S and E-V1S geometries, and infact dominate for E-V1S. For
the E-H1S �ow, the radial stress di�erential drops to about half that corresponding to shear
or hoop stress di�erential.
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Figure 11. Field plots, viscoelastic �uid-2: We=13 (�1 = 0:56 s); Re=0:08 (�c = 105 Pa s).

6.3. Variation with �uids: ẇ, Ṗw

To make direct comparisons across geometries for individual �uids, with particular reference
to localised rate-of-work and global power, we tabulate sampled maxima in Tables III–VII.

6.3.1. Viscous �uids-1 (a; b): We begin with viscous �uid-1 (Newtonian and inelastic) in
Table III, where shear-rate, local rate-of-work done, global power and pressure di�erential
are tabulated for all three problem instances. For the full-stirrer case (E-F1S), maxima in
shear-rate increase from Newtonian to inelastic �uids. Maxima in local rate-of-work, global
power and pressure di�erential decrease. Here, the local rate-of-work is dominated by shear
viscous in�uence. This decreasing trend with increase in shear-rate, in local rate-of-work,
global power and pressure di�erential, is also observed in E-H1S and E-V1S problems. For
both �uids and the E-H1S instance, in contrast to either E-F1S or E-V1S cases, maxima in
shear-rate increase by �fty percent and local rate-of-work doubles. Alternatively, for E-H1S
�ow, global power on the entire domain, is reduced over the other two cases. This illustrates
the more localised concentration of rate-of-work about the narrow-gap stirrer-tip for E-H1S
(see Figures 9 and 10). For E-V1S �ow, global power and pressure di�erential are greater
than that for E-F1S and E-H1S variants.
Hence, for viscous �uids-1, optimal mixer ẇ : Ṗw rating is attributed to E-H1S design,

doubling that for the two contender options.
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Figure 12. Stress, viscoelastic �uid-2: We=13 (�1 = 0:56 s); Re=0:08 (�c = 105 Pa s).

Table IV. Viscoelastic �uid-2: shear-rate, hoop stress, local rate-of-work maxima; power and pressure
di�erential; �=10−2; Re=0:08(�c = 105 Pa s); We = 13 (�1 = 0:56 s); E = 162:5.

Problem �̇ �		 ẇ� ẇ� ẇ Ṗ� Ṗ� Ṗw �P �(ẇ : Ṗw)

E-F1S 4.17 0.97 0.02 0.84 0.86 1.73 246.5 248.2 2.99 0.35
E-H1S 5.87 0.99 0.03 1.64 1.64 1.74 260.1 261.9 4.77 0.63
E-V1S 4.17 0.97 0.02 1.61 1.62 1.88 276.5 278.4 4.35 0.58

Table V. Viscoelastic �uid-3: shear-rate, hoop stress, local rate-of-work maxima; power and pressure
di�erential; �=10−2; Re=8(�c = 10:5 Pa s); We=13 (�1 = 0:56 s); E=1:625.

Problem �̇ �		 ẇ� ẇ� ẇ Ṗ� Ṗ� Ṗw �P �(ẇ : Ṗw)

E-F1S 6.09 1.05 0.04 1.55 1.59 2.68 255.4 258.1 5.25 0.62
E-H1S 7.88 1.84 0.06 3.59 3.64 2.87 466.2 469.1 7.87 0.78
E-V1S 5.87 1.24 0.04 1.82 1.83 2.94 289.8 292.7 6.50 0.63
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Table VI. Viscoelastic �uids-4(a, b), E-F1S: shear-rate, hoop stress, local rate-of-work maxima; power
and pressure di�erential; �=10−2; Re=8(�c = 1:05 Pa s); We=1:5 (�1 = 0:065 s); E=0:1875.

�2 : �1 �̇ �		 ẇ� ẇ� ẇ Ṗ� Ṗ� Ṗw �P �(ẇ : Ṗw)

1:999 8.12 5.49 0.07 11.25 11.32 0.51 164.3 164.8 4.57 6.87
1:8 7.07 4.34 5.56 8.37 13.93 48.73 137.9 186.6 4.03 7.46

Table VII. Viscoelastic �uid-2: local rate-of-work maxima; Re=0:08(�c = 105 Pa s);
We=13(�1 = 0:56 s); E = 162:5.

E-F1S E-H1S E-V1S

Pre-gap Post-gap Pre-gap Sub-stirrer Pre-gap Post-gap Stirrer-tip
Rate-of-work Max Max Max

ẇ s
� 1.31 −0:50 1.49 1.33 1.33 −0:33 0.93

ẇe
� −0:47 1.13 −0:37 0.38 −0:48 1.03 0.68

ẇ� 0.84 0.64 1.12 1.64 0.85 0.70 1.61

6.3.2. Viscoelastic �uid-2 (�c = 105 Pa s; �1 =0:56 s): For viscoelastic simulations, we go fur-
ther to tabulate additional quantities in Table IV at Re=0:08. Here, we chart maximum hoop
stress (�		), and split components of rate-of-work and power, into those due to viscous solvent
and elastic solute contributions. For viscoelastic �uid-2, shear-rates are of the same order as in
the inelastic case, for all three problems. Here, to mimic realistic doughs, we have employed
a relaxation time O(1) for which E=162:5, and a viscosity split, with miniscule solvent and
large elastic solute component. The ratio of these fractional viscosities is taken as 1:999. Due
to the small solvent presence, maxima in viscous portions of both local rate-of-work and
global power are small. Here, the dominant factor is the elastic contribution. Due to �uid
memory and excess shear-thinning e�ects there is consequent reduction in localised rate-of-
work and global power, which are about ten and �ve times lower, respectively, than for the
equivalent Newtonian and inelastic �uids. Pressure di�erential is also smaller, approximately
halved. This trend is conveyed across all three problem instances.
For such materials, optimal mixer ẇ : Ṗw rating resides with E-H1S design. The reduction to

E-V1S design is now only minor, so that both unsymmetric stirrer choices double the rating
for E-F1S. Hence, from both a viscous and elastic �uid property viewpoint, the unsymmetric
stirrer design is advocated. E-H1S is the optimal selection with respect to maximizing local
rate-of-work to power rating.

6.3.2.1. Split of ẇ�, �uid-2. We go further in splitting of ẇ�, to analyse in a qualitative
sense, the segregated components due to shear, ẇ s

� , and that due to extension, ẇ
e
�. That is,

associating extension and shear to be aligned with the orthogonal cylindrical coordinate system.
To an engineering approximation, this is largely the case for E-F1S and E-V1S, as �ow lines
closely approximate circular streamlines in the regions of signi�cance with respect to work,
near the vessel wall and by-passing the stirrer. The aim is to establish the relative proportion
of ẇe

�, as opposed to ẇs
�, so that we can identify the enhancement of ẇe

� per unit of power.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 43:1301–1328



1322 A. BALOCH AND M. F. WEBSTER

Figure 13. Locations of maxima: ẇr ; ẇ s
r ; ẇe

r .

From this, de�nitive statements can be made concerning preferential choice re optimality of
mixer design. This is an important indicator for mixer design, viz-a-viz rheology, to attain
work input locally and in�uence upon material structure. We recall the objective for any
speci�c power rating, is to maximise the elongational rate-of-work component, in preference
to that due to shear. In this manner, the link may be established to build-up of desired material
structure through kneading.
In Table VII, we record various di�erent sample point values. Concentrating initially upon

E-F1S, maxima in elastic-shear ẇs
� corresponds to a pre-narrow-gap surface point on the

stirrer. For elastic-extension ẇe
�, maxima arise in the post-gap, of similar order to pre-gap ẇs

�.
Furthermore, at the pre-gap point, the level of ẇe

� is of .equal order to that of post-gap ẇs
�.

These pre- and post-gap locations are indicated by �lled and un�lled circles in Figure 13. We
observe that data recorded in Table IV to represent full elastic ẇ� equate to pre-gap values.
Also, with this equivalence between compression and expansion �ow about the stirrer in ẇs

�
and ẇe

� maxima, we conclude that the position would be reversed if the motion is translated
from the vessel to the stirrer. In contrast, for viscous �uids, ẇe

� peaks at about one half of
ẇs

�, with such maxima located at similar post- and pre-gap points, as above. Hence, memory
�uids can generate signi�cant extensional rate-of-work.
For the unsymmetric stirrer cases, we tabulate the maxima sample point values and the

corresponding readings for the same pre- and post-gap locations of E-F1S. For E-V1S �ow,
similar values are observed at pre- and post-gap points as for E-F1S. This is because stirrer
shape is identical within the narrow-gap for these two designs. However, for E-V1S, the
maxima arise elsewhere, near the sharp downward-pointing tip of the stirrer within the narrow-
gap (see Table IV and Figure 13, where a �lled square symbol represents the overall maxima).
For E-H1S, pre-gap sample values are as above for E-F1S; maxima arise under the stirrer
close to the tip nearest the narrow-gap. This case gives rise to the largest ẇ�. Due to the
complex local orientation of �ow lines with the E-H1S geometry, it is di�cult to isolate
shear and extensional components of work in any meaningful way. To some degree, projected
quantities of ẇs

� and ẇe
� at the sub-stirrer point each have mixtures of shear and extensional

components. Hence, for E-H1S, only ẇ� data should be considered. Nevertheless, splitting
of work components does aid in appreciation of the distribution of these localized maxima,
associated with the di�erent forms of work.

6.3.3. Viscoelastic �uid-3 (�c = 1:05 Pa s; �1 = 0:56 s): At Re=8 and E=1:625 in Table V,
i.e. model �uids, we record the corresponding values for the same set of variables as in
Table IV. Here, the characteristic viscosity is of order one hundred less than for the former
viscoelastic �uid-2 (above). In real terms, once scaling is applied, the physical stresses and
therefore other qualities that follow suit, are greatly reduced over those for viscoelastic �uid-2.
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Bearing this point in mind it is instructive to gather inference in the non-dimensional context,
from Tables IV–V, as we elevate inertia from Re=0:08–8. Maxima in shear-rate, hoop stress,
local rate-of-work, and pressure di�erential and global power, rise for each problem instance.
For E-H1S and E-F1S, shear-rates rise by about �fty percent and this position is re�ected
in doubling of the local rate-of-work. For E-H1S with increasing Re, the maxima in ẇ�,
now switches to above the stirrer. ẇ� under the stirrer reduces by twenty-�ve percent from
that at Re=0:08. Adjustment for E-V1S, is far less dramatic. Such factor shifts are barely
felt through the global power-rating, in either E-F1S or E-V1S, noting that this (or torque
equivalent) is the conventional calibration mechanism. Therefore, it is important to note such
insensitivity. However for E-H1S, the power practically doubles above that for �uid-2.
Hence, comparing data directly within Table V at Re=8, the E-H1S instance stands out

most prominently. Over other geometries, shear-rate is magni�ed, extensional hoop stress is
doubled, as is the elastic rate-of-work component and total ẇ. The power also approximately
doubles. Oncemore, E-H1S is the optimal design choice on a ẇ : Ṗw rating basis and this
preference is now quite markedly established.

6.3.4. Viscoelastic �uids-4 (�c = 1:05 Pa s; �1 = 0:065 s): For the single geometry option
E-F1S, we proceed in Table VI to cross-check at Re=8 (�c = 1:05 Pa s) on two counts.
First, against Table V data, with reduction in elasticity to E=0:1875 (�1 = 0:065 s). That
is maintaining the same choice of minimal solvent stress component (�2=�1 = 1

999 , �uid-4a).
Hence, memory e�ects will be apparent. Subsequently, at this lower elasticity level, we also
compare data for �uid-4a against the situation with relatively high solvent stress component
(�2=�1 = 1

8 , �uid-4b). So here, at equitable �uid memory levels, it is the solvent in�uence
being isolated (see our earlier work [3]).
On the �rst count, comparing data in Tables V and VI to pinpoint memory e�ects, so

for �2=�1 = 1
999 ; {�̇; �		; ẇ} maxima are all elevated for �uid-4a over �uid-3. That is, with

reduction in elasticity, �̇ rises by twenty �ve percent; �		 increases �ve-fold and ẇ increases
by about a factor of ten. Global power declines by about one-half and pressure di�erential
lowers. Signi�cantly, ẇ : Ṗw rating increases by one order of magnitude. The contributions to
local rate-of-work and global power from viscous stress are clearly negligible, as for �uid-2
and �uid-3.
When the solvent presence is elevated in contrast, (�2=�1 = 1

8 , �uid-4b), there is little change
in total quantities, ẇ or Ṗw, over �uid-4a. As to be anticipated, there is a switch of some
component of the local rate-of-work and power into the solvent portion, but overall the same
conclusions apply. This rati�es our earlier �ndings on ẇmax for �uid-4b, that we explored
extensively in Reference [3] for alternative rheology.

6.4. Parallel performance

To establish parallel computing performance in this complex problem setting, we have
invoked both homogeneous and heterogeneous distributed computation. A homogeneous net-
work is established using a shared-memory eight-processor Intel Solaris platform, with 16GB
memory machine. The heterogeneous network is made up from a mixed four-processor DEC-
alpha shared-memory, eight-processor shared-memory and seven single processors distributed-
memory Intel clusters. Each of the Intel clusters runs under the Solaris operating system. A
public domain PVM3.4.3 version for message passing protocol has been employed to support
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Table VIII. Speed-up and e�ciency on heterogeneous network, E-V1S; Mech-M3.

Newtonian Viscoelastic

Processors Sn 
n Sn 
n

1 1.00 1.00 1.00 1.00
2 1.94 0.97 1.99 1.00
4 3.79 0.95 3.90 0.98
6 5.39 0.90 5.77 0.96
8 7.29 0.91 7.67 0.95
12 10.73 0.89 11.65 0.93
16 12.82 0.80 14.24 0.83

inter-processor communication. Computed results are presented through the parallel perfor-
mance of the Taylor–Galerkin scheme over a cluster of n-processors, by measuring the total
speed-up (Sn) factor and e�ciency (
n) with increasing numbers of processors (and subtasks)
de�ne as:

Sn=
Tseq
Tn

; 
n=
Sn

n

where Tseq is the CPU time in seconds (s) for the sequential algorithm and Tn is the CPU
time for the parallel algorithm. CPU time Tn of the parallel computation can be decomposed
into computation time (T compn ) and communication time (T commn ). Timings correspond to total
job run-time, inclusive of input–output and communication latency.
In Table VIII, speed-up and e�ciency factors are recorded for the parallel Taylor–Galerkin=

pressure-correction algorithm. These timings are for Newtonian and viscoelastic simulations
on the E-V1S problem with mesh M3, a most detailed case. In our previous investigations
[3, 5] we considered large problems, so that for up to twelve processors, linear speed-up
was derived and only two percent loss of e�ciency was observed. The current problems
are particularly chosen to illustrate parallelised performance characteristics over mixed-type
computing platforms of up to order 20 processors. The homogeneous network comprises of
up to six slave processors and one master processor, from a shared-memory cluster. Quantized
metrics on heterogeneous clusters are cross-checked on equivalent homogeneous clusters (same
number of processors), demonstrating a degradation of about 1 per cent in time consumption
between these network options.
In Figure 14, over a heterogeneous network cluster, timings for Newtonian �ows illustrate

almost linear speed-up with an increasing number of processors. Only 5 per cent loss of
e�ciency is observed with up to four processors. As we split our computational domain into
more than four subdomains (therefore increasing the number of slave processors), linear speed-
up degrades. So for example, on a heterogeneous network cluster of 16 processors, degradation
in e�ciency is observed by as much as 20 per cent. In this case, interfacing nodes on the
master processor exceed the total number of computational nodes on each subdomain.
For viscoelastic computations, on an eight slave- and one master-processor heterogeneous

network cluster, 5 per cent loss of e�ciency is observed. This performance level is already
superceeded for Newtonian simulations once four-slave processors are involved. This re�ects
the fact that viscoelastic computations carry about two and half times the DOF of the Newto-
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Figure 14. CPU speed-up; heterogeneous cluster.

nian case and hence double T compn . The consequence of this loading is felt within our parallel
implementation via the ratio of internal to boundary nodes in each instance. This ratio will
a�ect the proportion of cost, split between communication and sub-problem computation (e.g.
masking communication [3, 11, 5]).
Clearly, it is preferable to acquire su�ciently large problems to take full advantage of the

e�ciency o�ered through parallelization. For optimality, a balance must be struck between
the degrees-of-freedom per subdomain and the number of processors n. This should ensure
that the ratio between T compn and T commn is minimal. For the current problem of E-V1S on
mesh-M3, Newtonian results for 8530 nodes and 19 225 DOF re�ect a decline in speed-up
factor and e�ciency on two slave-processors (or subdomains, see Table VIII), tolerating about
2.3 per cent Cn ratio (Table II). For viscoelastic timings with 44 815 DOF, degradation does
not emerge until four slave-processors are invoked, for which Cn approaches about 9.9 per
cent on the master and 5.2 per cent on the slaves. The more meaningful ratio is held to be
the slave Cn. This reechos our previous experience [3]. Communication and compute time
are not one-to-one in value, being dependent upon di�erent hardware mechanisms. One may
identify, for example, an acceptable level of e�ciency loss, say O(10 per cent). In this case,
to satisfy such a threshold, one would reasonably expect to employ 12 or more processors
for the viscoelastic problem and around eight processors for the Newtonian problem. This
equates to slave Cn ratios of around 15 per cent for the viscoelastic problem and 10 per cent
for the Newtonian case. The overall message is, the larger the T compn , the more T commn can be
tolerated, and thus masked. The bene�t is that ever larger problems are demanded to take full
advantage of the parallisation capabilities.

7. CONCLUSIONS

For the problems considered, almost linear speed-up is achieved with distributed parallel
computation, undertaken over homogeneous and heterogeneous network clusters. This is the
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case for clusters with up to a score of relatively powerful individual processors (coarse-
grained). For viscoelastic simulations, speed-up improves compared to Newtonian and inelastic
cases due to the increase in DOF per node, and hence, the relative increase in compute-time for
each sub-problem. Practically ideal linear speed-up is identi�ed as attainable, provided certain
threshold ratios on problem size per processor are not exceeded. In particular, compute time
per processor should be maximised so that communication can be e�ectively masked.
With respect to the �ow problems investigated, we have analysed our results with respect

to variation in mixer design (adjusting stirrer shape) and through change of �uid rheology. On
rheology, a range of material properties have been investigated, viscous and elastic, covering
those for model �uids, model dough, and actual dough. This has lead to analysis with respect
to increasing viscosity levels, examination of the in�uence of viscous to shear-thinning e�ects,
and the incorporation of various levels of �uid memory. We have identi�ed �ow structure
with variation across problem instances, re�ecting localized rate-of-work maxima and global
power consumption.
For these rotational �ows, about an eccentrically positioned stirrer in a cylindrical vessel,

a recirculating region appears towards the centre of the vessel. All three stirrer-shapes, full,
horizontal-half and vertical-half, re�ect this structure. Decreasing viscosity levels and elevating
inertia, distorts the shape of the recirculating region, resulting in asymmetry, and this asym-
metric vortex twists and moves towards the upper half-plane of the domain. Such asymmetry
is further enhanced through elasticity. The horizontal-half stirrer case manifests more dramatic
compression and expansion around both sides of the stirrer, than the alternative geometries.
For the vertical-half stirrer as compared to the full case, the �ow circumvents the stirrer more
smoothly on the side towards the vessel centre, whilst on the counterside of the stirrer, the
�ow structure emulates that of the full-stirrer.
Overall, we have observed that inertia has a signi�cant in�uence in disturbing the symme-

try in �ow structure. Shear-thinning introduces larger shear-rates, but reduces localised rate-
of-work maxima and global power. Elasticity also has the e�ect of destroying �ow symme-
try. There is an order of magnitude reduction in rate-of-work maxima for viscoelastic �uid-2
above that for viscous �uids-1, and the non-symmetric stirrer cases provide double the values
of the full-stirrer instance. Another feature is the wider dispersal of shear-rate and rate-of-work
for the viscoelastic �uid. The hoop stress tends to dominate the other components, provid-
ing azimuthal stretching. It displays the more prominent and extended wake region beyond
the stirrer, in a zone close to the vessel wall occupied by �ow lines that encounter the stir-
rer. Accounting for stress di�erentials, we observe that the vertical-half stirrer results closely
resemble those of the full-stirrer. There is a signi�cant rise from full-stirrer to horizontal-half
stirrer �ow in both shear and hoop stress di�erentials: hoop stress di�erential doubles and
shear stress di�erential triples. Both such quantities will contribute to shear and extensional
elastic work, as �ow lines become non-circular, say in the vicinity of the stirrer where stress
extrema occur.
For model �uids (�uid-3, where viscosity and E are O(1)) and inertia is a factor, the

horizontal-half stirrer geometry is the optimal design choice on a ẇ : Ṗw rating basis. This
preference is quite marked. We have demonstrated that with reduction in elasticity (�uid-3 to
�uid-4a), �̇ rises by 25 per cent, �		 increases �ve-fold and ẇ increases by about a factor of
ten. Global power declines by about one-half, and signi�cantly, power rating ratio increases
by one order of magnitude. An increased solvent presence in the modelling does not alter
these �ndings.
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For dough like �uids (�uid-2), optimal mixer ẇ : Ṗw rating resides with the horizontal-half
stirrer design, though the reduction to vertical-half stirrer design is only minor. Both unsym-
metric stirrer choices double the rating for the full-stirrer design. So for both viscous and
elastic �uids, the unsymmetric stirrer option is advocated, with the horizontal-half stirrer the
optimal selection with respect to maximising local rate-of-work per unit power. For viscous
�uids, this preference is prominent, with power rating ratio doubling for the horizontal-half
stirrer design. This is the useful coe�cient that dictates quality of kneading work. Through
analysing the contributions to elastic rate-of-work, we observe that �uids with memory, as
opposed to purely viscous alternatives, are capable of supporting signi�cant extensional
localised rate-of-work. We have pointed to where this arises and comment upon its impact
upon the kneading process. This is deemed to be of considerable importance to the actual
industrial application. Justi�cation for our �ndings and comparison with experimental data
may be gathered through the open literature and the extensive detail we have provided there
[33, 34].
To the future, possible extensions to the present work lie in considering variants in rheology

and three-dimensional settings (see [1, 2, 5, 35]). The latter is important when it is necessary to
consider full �ow �elds within the mixer-vessel, say under part-�lled scenarios. Here, further
complexity in boundary conditions (wetting and peeling [2], slip [36], and free-surfaces)
and the shear size of the �ow problems introduces new and challenging issues to resolve.
E�ciency in computation becomes even more critical. Alternative rheology may be addressed
also, say through viscoplastic response, which is of wide industrial interest. This may be
achieved via a Bingham plastic-type representation with a yield stress (such as, through the
Sisko model, an adaptation of the Cross model [37]), an alternative form to the viscous
response considered here.
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